首頁 新聞 > 科技 > 正文

核磁共振成像(MRI)的系統(tǒng)架構(gòu)

現(xiàn)代核磁共振成像(MRI)掃描儀的設(shè)計(jì)已發(fā)生了革命性的變化,這都得益于現(xiàn)代IC設(shè)計(jì)的一系列發(fā)展和進(jìn)步。MRI等醫(yī)療成像設(shè)備雖產(chǎn)生一定的影響,但并不是IC發(fā)展的主要驅(qū)動(dòng)因素。相反,它們是無線基礎(chǔ)設(shè)施等行業(yè)持續(xù)發(fā)展的受益者。這種技術(shù)進(jìn)步不僅提供MRI各種子系統(tǒng)改善性能的機(jī)會(huì),同時(shí)也使子系統(tǒng)設(shè)計(jì)得以簡化。

MRI子系統(tǒng)受益于現(xiàn)代IC的一個(gè)例子是梯度控制。高端MRI掃描儀要求以1ppm量級(jí)的精密度、精確度和穩(wěn)定度來控制梯度場(chǎng),這本身就是一項(xiàng)挑戰(zhàn);而且,在實(shí)現(xiàn)如此高水平控制的同時(shí),還必須提供數(shù)百kHz或更大的吞吐速率。若無法維持所需的控制,將會(huì)因?yàn)閳?chǎng)梯度的非線性生成干擾偽像。若無法達(dá)到所需的噪聲水平,圖像中可能會(huì)出現(xiàn)“重影”。

過去高性能梯度控制一直采用復(fù)雜的分立電路來實(shí)現(xiàn)。圖1a為這種方式的一個(gè)簡化示例。在此例中,兩個(gè)16位DAC相結(jié)合,用來產(chǎn)生更高的等效精度。次要DAC的輸出會(huì)經(jīng)過衰減,以提供更精細(xì)步進(jìn),隨后與主要DAC輸出結(jié)合。然而,這種組合不能提供所需的線性度,因此要在反饋環(huán)路中使用一個(gè)高性能ADC。該ADC不太可能用于音頻方面,故在數(shù)字邏輯中須進(jìn)行額外的校正。對(duì)于典型高分辨率ADC,另一個(gè)可能發(fā)生的問題是空閑音,也必須消除掉。盡管本圖已經(jīng)將復(fù)雜問題大大簡化,但應(yīng)明白,實(shí)際運(yùn)作狀況絕不會(huì)如圖示那么簡單。

圖1 MRI的梯度控制

當(dāng)今的IC工藝及設(shè)計(jì)技術(shù)允許工程師將所有這些需求整合到一個(gè)1×10-6 DAC當(dāng)中,如圖1b所示。這是通過經(jīng)改善的薄膜匹配與片內(nèi)自校正功能相結(jié)合加以實(shí)現(xiàn)的。線性度、穩(wěn)定度和噪聲能夠改善高階MRI梯度控制的性能,并且其電路與傳統(tǒng)方法相比大大簡化。然而,要達(dá)成總體1×10-6精度的設(shè)計(jì)挑戰(zhàn)仍然相當(dāng)大,但DAC不再是限制因素,支持電路、器件選型和適當(dāng)?shù)牟季植季€均起著重要的作用。

射頻(RF)接收機(jī)是另一個(gè)受到新技術(shù)巨大沖擊的領(lǐng)域。該領(lǐng)域一直在不斷變化,不同的原始設(shè)備制造商(OEM)采用不同的方式完成任務(wù)。然而,一個(gè)共同發(fā)展趨勢(shì)是希望能夠?qū)⒔邮针娮悠骷浦粮拷€圈組件的位置,這樣做合情合理,如果從前置放大器到后續(xù)接收電子器件之間使用較長的同軸電纜,則不僅體積龐大,而且不利于接收機(jī)的性能。若將接收電子器件移至更靠近線圈的位置,會(huì)對(duì)電子器件有兩大限制。電子器件必須更小,因?yàn)橐菁{大量的接收通道,所以可用空間更少。另外,功耗也是一個(gè)主要因素,在更小容量的空間內(nèi)必定會(huì)產(chǎn)生散熱問題。

圖2 MRI的數(shù)字轉(zhuǎn)換

針對(duì)無線基礎(chǔ)設(shè)施所做的數(shù)據(jù)轉(zhuǎn)換器改進(jìn)同樣能簡化這項(xiàng)工作。蜂窩基站對(duì)更好的噪聲與失真性能的需求,推動(dòng)了能夠?qū)崿F(xiàn)高中頻(IF)頻率采樣的高性能16位ADC的發(fā)展,而這正好也符合MRI的需求,在主流的1.5 T及3 T系統(tǒng)中,信號(hào)的中心頻率約為64MHz和128MHz。反觀傳統(tǒng)的MRI系統(tǒng)通常會(huì)牽涉到這樣一個(gè)問題,就是在轉(zhuǎn)換至數(shù)字域,供進(jìn)一步處理之前,必須先在模擬域中下變頻至低中頻,如圖2a所示。新一代ADC的出現(xiàn)使這種轉(zhuǎn)換過程得以省去,進(jìn)而縮小總體解決方案,如圖2b所示。這至少能部分滿足對(duì)縮小尺寸的需求,從而適合更小尺寸應(yīng)用。

如同任何其他的設(shè)計(jì)問題一樣,在運(yùn)用新ADC技術(shù)的優(yōu)勢(shì)時(shí),也需要加以權(quán)衡。由于MRI掃描儀中的RF信號(hào)電平較低,因此信噪比(SNR)是ADC的一項(xiàng)關(guān)鍵特性規(guī)格。在開發(fā)突破性產(chǎn)品時(shí),信噪比也是一項(xiàng)重要的目標(biāo)特性規(guī)格。研發(fā)新功能時(shí),諸如功耗之類的規(guī)格常常退居其次,后來的新一代ADC可以通過對(duì)主要規(guī)格的性能,例如信噪比做些讓步來實(shí)現(xiàn)這些次要規(guī)格。最后,隨著技術(shù)日益成熟,在第一代中達(dá)成的突破性功能,也可以在維持低功耗(或是其他次要規(guī)格)的情況下實(shí)現(xiàn)。因此,MRI系統(tǒng)設(shè)計(jì)廠商可以選擇和權(quán)衡不同ADC的強(qiáng)項(xiàng)及弱點(diǎn),找出最符合其系統(tǒng)目標(biāo)的ADC。

提高個(gè)別器件的性能,并不是蓬勃發(fā)展的IC技術(shù)助力實(shí)現(xiàn)更緊湊MRI接收架構(gòu)的唯一方法,更高集成度也是受通信行業(yè)推動(dòng)而發(fā)展。隨著采用模擬下變頻轉(zhuǎn)換的架構(gòu)逐漸被直接采樣架構(gòu)所取代,此功能也正轉(zhuǎn)換到數(shù)字領(lǐng)域,通常成為FPGA的一部分。信號(hào)被分成I與Q兩個(gè)分量,并且利用正交數(shù)控振蕩器(NCO)轉(zhuǎn)換至基帶,然后進(jìn)行過濾;接著,此信號(hào)會(huì)傳送到系統(tǒng)處理器中,此時(shí)可應(yīng)用更為全面的信號(hào)處理技術(shù)。

圖3 集合數(shù)模轉(zhuǎn)換器和數(shù)字下變頻功能的單芯片

這種分隔式方案可以很好地運(yùn)作,然而,對(duì)于試圖使接收機(jī)解決方案尺寸最小化的設(shè)計(jì)廠商而言,具有更高集成度的解決方案會(huì)有所助益。舉例來說,高性能標(biāo)準(zhǔn)器件將模數(shù)轉(zhuǎn)換功能與針對(duì)多通道的數(shù)字下變頻功能結(jié)合到單芯片中(見圖3),這些器件可省去介于ADC與FPGA之間的高速鏈路開發(fā)需求,進(jìn)而簡化設(shè)計(jì)工作。片內(nèi)數(shù)字下變頻器非常靈活,能夠適應(yīng)不同的系統(tǒng),若將此功能從FPGA上移轉(zhuǎn)出來,便可實(shí)現(xiàn)更小、更簡單的FPGA設(shè)計(jì),以節(jié)省更多空間或成本。

為滿足通信基礎(chǔ)設(shè)施需求所做的RF器件改進(jìn),不僅對(duì)MRI掃描儀的接收端有幫助。DAC技術(shù)的改進(jìn),特別是直接數(shù)字頻率合成(DDS)方面的改進(jìn),亦可簡化掃描時(shí)脈沖生成的設(shè)計(jì)工作。對(duì)于任何可能在未來使用到的場(chǎng)強(qiáng),這些器件具有足堪勝任的速度。如同集成DDC能夠從FPGA上將任務(wù)移轉(zhuǎn)出來一樣,DDS元件也能夠在發(fā)射端執(zhí)行相同的工作,配置為正交數(shù)字上變頻器(QDUC)的DDS具有足夠的靈活性來產(chǎn)生所需的脈沖。另外還有一項(xiàng)能夠簡化FPGA設(shè)計(jì)的特性,就是脈沖可以存儲(chǔ)在片上存儲(chǔ)器中,等到需要時(shí)再回放。

關(guān)鍵詞: 核磁共振 MRI 系統(tǒng)

最近更新

關(guān)于本站 管理團(tuán)隊(duì) 版權(quán)申明 網(wǎng)站地圖 聯(lián)系合作 招聘信息

Copyright © 2005-2018 創(chuàng)投網(wǎng) - www.mallikadua.com All rights reserved
聯(lián)系我們:33 92 950@qq.com
豫ICP備2020035879號(hào)-12