首頁 資訊 > 創(chuàng)新 > 正文

全球微速訊:E-RSSI技術助力更精確的短距離測距應用

作者:巨微-技術平臺部


(資料圖片僅供參考)

一、RSSI的作用

RSSI是Received Signal Strength Indicator(接收信號強度指示器)的縮寫,用于測量接收到的信號強度。在低功耗藍牙設備中,RSSI也具有重要的作用,主要體現(xiàn)在以下幾個方面:

信號強度測量:通過測量接收到的信號強度,可以判斷兩個設備之間的距離遠近,從而進行定位和距離測量等應用。在低功耗藍牙設備中,RSSI通常用于確定設備之間的近距離連接,如近場支付、智能家居設備的控制等。

功耗控制:在低功耗藍牙設備中,電池壽命是一個非常重要的考慮因素。通過RSSI的測量,可以判斷設備之間的距離遠近,從而控制設備的發(fā)射功率,減少不必要的電量消耗,從而延長電池壽命。

自動化控制:通過RSSI的測量,可以實現(xiàn)設備的自動化控制。例如,當設備之間的距離達到一定的范圍時,可以自動觸發(fā)某個操作或切換到某個模式。

安全措施:在低功耗藍牙設備中,通過RSSI的測量,可以檢測到外部干擾或攻擊信號,從而采取相應的安全措施,保護設備和用戶的安全。

總之,RSSI在低功耗藍牙設備中具有重要的作用,可以幫助實現(xiàn)距離測量、功耗控制、自動化控制和安全措施等功能,從而提高設備的性能和用戶體驗。

二、常用藍牙接收機架構中實現(xiàn)RSSI的方法

RSSI的測量是通過檢測在藍牙信道中的有效信號能量的大小,通過計算所得的數(shù)值來表示。

下圖是一個當前低功耗藍牙芯片中最常用的接收機的架構。在該架構中,最關鍵的模塊是用高速零交叉(Zero Crossing)來實現(xiàn)信號的量化。

過零檢測是一種常用的GFSK信號解調技術,它通過檢測信號中連續(xù)的過零檢測點來獲取調制信息。具體而言,當GFSK信號的頻偏較小時,信號的過零檢測點會非常明顯。通過在接收端設置一個閾值,檢測到信號的過零檢測點后,就可以判斷信號的相位變化,并恢復出原始的調制信息。這種方法相對簡單,對硬件的要求較低,因此在實際應用中被廣泛采用。特別是在深亞微米的半導體集成電路工藝中,比如55nm以下的工藝中,由于晶體管的開關速度得到大大提升,這種方法可以大大降低芯片的成本和功耗,同時,充分可以利用更高密度的數(shù)字電路的運算能力。因而,成為低功耗藍牙設計公司所采用的主流電路架構。然而在這種過零檢測的電路結構中,比較難直接測量射頻信號的RSSI值。因為過零檢測是在基帶信號上進行的,而基帶信號已經(jīng)經(jīng)過了解調和低通濾波,射頻信號的能量分布已經(jīng)不同于原始的射頻信號,難以直接測量射頻信號的能量。因此在實現(xiàn)中,通常通過一些間接的方法來估計射頻信號的能量和RSSI值。比如,圖中所描述的用一個射頻信號的帶通濾波器,將射頻信號限制在一個較窄的頻帶內,然后通過一個可調增益放大器將信號放大到一個合適的范圍內,在此基礎上,用一個低精度的ADC,用于估測射頻信號的RSSI值。由于這種方法采用了可調增益放大器,其估算出來的RSSI值與實際的RSSI值之間的差異如下圖。紅色的是實際讀取的RSSI值;黑線是理想的RSSI值。

三、巨微接收機架構中的E-RSSI(Enhanced RSSI)的實現(xiàn)方法

不同于主流結構,巨微在自己的設計中,充分考慮到準確測量RSSI值的重要性,在接收端的低中頻架構中,采用一種增強型接收信號強度指示器(Enhanced Received Signal Strength Indicator,簡稱E-RSSI)。該技術采用高精度的中頻ADC(Analog to Digital Converter,模數(shù)轉換器)的方法,這種方法包括一個高精度復數(shù)域連續(xù)時間調制器(High resolution complex continuous sigma-delta modulator)和相應的濾波器。該結構具有以下優(yōu)勢:

高精度模擬數(shù)字轉換:可以提高數(shù)字信號的采樣精度和信噪比,從而避免了在ADC轉換之前的AGC造成的模擬增益偏差,進而提高GFSK解調的準確度和提高RSSI的檢測精度。特別是在BLE通信中,因為BLE信號帶寬比較窄,通常在1MHz以下,所以需要使用高分辨率的ADC來確保采樣精度和動態(tài)范圍。

高精度帶通濾波:對于低功耗藍牙這種窄帶通信標準,有效的濾除帶外的信號,對于信號的解調和信號能量的評估尤為重要。RSSI計算在數(shù)字域完成,精確穩(wěn)定;不受工藝偏移影響。

最小帶內群延時(Group Delay)誤差:由于藍牙的有效信號分布在1MHz的帶寬內,在整個信號處理的過程中,保持信道內的各個頻點的信號的延時相等,對于后面的GFSK解調尤為重要。巨微實現(xiàn)電路中,在濾波器的選取和參數(shù)設計上,保證了最小的群延時特點。信號經(jīng)過信號等延時濾波器,保持相位信息,易于同一時間點的能量計算。

GFSK解調與RSSI計算在同一時間點進行,測量準確,不受同頻干擾影響。

在上述的設計基礎上,整個接收端的RSSI的實際測量性能與理想性能的比較如如圖。紅色的是實際讀取的RSSI值;黑線是理想的RSSI值。對比主流的RSSI測量性能,顯然有明顯的提升。

然而,集成復數(shù)模擬信號中頻濾波器的高精度ADC并不是沒有代價的。首先,它結構復雜,設計難度大,需要克服穩(wěn)定性、工藝漂移等技術問題,需要設計人員有很好的理論基礎和實踐經(jīng)驗。同時,由于成本高,功耗偏大,不利于深亞微米集成。

E-RSSI的測量值是基于解調后的有效信號來做的計算,而不是所有同頻信號。模擬和數(shù)字域多級中頻濾波器,對帶外干擾有更好的抑制。由于在結構中沒有自動增益調節(jié)器,避免了模擬自動增益級帶來的工藝、延時的誤差。同時,采用高精度ADC,完整保持了射頻有效信息,在RSSI計算中保持更高精度。

四、實測的E-RSSI的效果

E-RSSI的技術實現(xiàn)的射頻,具有以下優(yōu)點:

芯片出廠的RSSI測量基準一致性好,差異小,易于產(chǎn)品方案成型后的距離校準;

在不同溫度、電壓下,測量得到的差異?。?/p>

測量得到的RSSI值穩(wěn)定,不會發(fā)生跳變。

以下是針對同一批次晶圓的不同芯片,做了相同輸入的信號幅度,讀取RSSI值的對比。從結果可以看出,對于相同設計的PCB和封裝芯片,在相同的輸入藍牙信號的情況下,不同的芯片讀出的RSSI值接近相同。

下圖是對比上述三顆芯片的RSSI值讀數(shù)與平均值的差異,結果可見:芯片之間的讀數(shù)差異在±1左右,接近相同。

同時,巨微選取過去3年中,幾批工藝參數(shù)不同的晶圓封裝的芯片,其晶圓磨劃、封裝打線、測試模塊形狀和嵌入的系統(tǒng)程序都有較大差異。數(shù)據(jù)總結如下圖。

由圖中比較可見,不同的芯片,在RSSI值的變化斜率上接近相同,其差異在于天線、封裝的不同設計,導致的信號衰減不一樣。這代表利用E-RSSI技術,如果在產(chǎn)品端做出廠校準,最終產(chǎn)品可以完全實現(xiàn)RSSI值測量的可重復性和一致性。

經(jīng)過長時間驗證,用E-RSSI技術和HID協(xié)議棧,在無感解鎖的應用場景下,其一致性接近100%。

五、在實際應用中E-RSSI的應用場景和優(yōu)勢

下圖是典型的利用RSSI和HID協(xié)議,在兩輪車的無感解鎖中的應用。在該應用中,當手機靠近兩輪車時,嵌入在兩輪車中的藍牙模塊通過讀取接收到的手機發(fā)出的RSSI值,來判斷手機距離的遠近,從而決定是否開鎖或關鎖。

常用的系統(tǒng)操作流程如下:

配對:將車主的手機與目標產(chǎn)品(比如:兩輪車)的藍牙模塊進行藍牙配對。這個配對過程可以通過專用APP完成。在配對中,APP完成設備的尋找、選取和密鑰設置。同時,在配對過程中,方案商可以對距離和RSSI值之間做校準,并通過藍牙連接更新到目標產(chǎn)品中。配對完成之后,手機和目標產(chǎn)品之間將建立智能鑰匙的功能。該配對連接是基于HID協(xié)議,并且在操作系統(tǒng)底層得到支持。

連接HID設備:設備的藍牙芯片在配對完成之后,會不斷掃描周邊已經(jīng)配對的手機,并試圖與斷開的手機重新建立HID連接。當手機在設備藍牙的掃描范圍之內后,手機和設備重新建立連接。此時,設備開始讀取手機發(fā)出的藍牙信號的RSSI值。

RSSI讀取:設備端的藍牙芯片與建立好HID連接的手機之間,不斷的交換信息,同時,設備的藍牙通過巨微芯片的E-RSSI結構讀取RSSI值,并以此判斷手機與設備之間的距離。

解鎖:當RSSI值高于預設的值,設備判斷為距離足夠近,并實施解鎖動作。

關鎖:當RSSI值小于預設的值,設備判斷為距離足夠遠,并實施關鎖動作。

在自動解鎖應用中,以電瓶車為例,無感智能鑰匙的體驗需要:

用RSSI值來解鎖的重復性和一致性;

RSSI值的大小不易被同頻干擾影響;

與HID協(xié)議配合,可以實現(xiàn)后臺加密、解鎖;

客戶可以自己配置解鎖距離;

方案公司可以自己標定解鎖距離;

不需要后臺駐留APP或小程序;

手機兼容性好。

在巨微的E-RSSI方案中,以上都可以做到。

以下是兩種典型的應用場景。

在汽車T-Box上的典型應用

MS1682承擔T-Box內部的主控、存儲和藍牙;

MS1658完成定位錨點(Anchor)的功能;

在這種架構下,巨微的MS1682通過藍牙與各個錨點芯片(Anchor-1、Anchor-2,...)建立連接,并根據(jù)RSSI的讀數(shù)來計算手機與車體的實際距離。當手機接近或離開車體到設定值之后,啟動解鎖或關鎖。

在兩輪車解鎖模塊(報警器、儀表盤)的典型應用有下面兩種典型形態(tài)。

主控MCU還是用系統(tǒng)原有的。

用兩個藍牙芯片做錨點(anchor)來提升定位精度;其中一個錨點芯片視成本需求,可以省掉。

用MS1642替代主控MCU,同時做錨點;

另一個MS1642做錨點,該芯片視成本需求,可以省掉。

在上述實現(xiàn)中,兩個錨點(或一個)將讀到的手機發(fā)射的藍牙RSSI值,進行計算,并根據(jù)估計的距離來實現(xiàn)解鎖或關鎖。

六、巨微相關產(chǎn)品信息

巨微現(xiàn)有芯片中支持E-RSSI 的藍牙MCU型號和特點:

Part

PowerSupply

(V)

Flash

(Byte)

SRAM

(Byte)

Interface

CMP

RTC

ADC

PWM

IO

Function

PACKAGE

UART

I2C

SPI

HID

OTA

SOC/SiP

MS1642

1.9~3.6

64K

8K

2

1

1

1

Y

1chx12bit

8

10

Y

Y

SiP

SOP16

MS1643

1.9~3.6

64K

8K

2

1

1

1

Y

2chx12bit

7

8

Y

Y

SiP

QFN16

MS1656

2.5~3.6

64K

4K

2

1

1

1

Y

4chx12bit

7

11

N

Y

SiP

QFN20

MS1658

2.5~3.6

64K

4K

2

1

1

1

Y

4chx12bit

8

11

N

Y

SiP

QFN20

MS1751

1.8~3.6

32K

6K

1

1

1

1

N

N/A

5

16

Y

N

SOC

QFN24

在上述型號中,支持HID(應用于后臺解鎖)和OTA(應用于現(xiàn)場校準)功能的芯片,特別適合像接近無感解鎖這樣的應用場景。

同時,我們提供下列設計套件。

關于巨微

巨微集成電路是一家技術領先、擁有全面底層芯片技術的芯片設計公司,公司擁有行業(yè)資深人員組成的強大研發(fā)團隊,設計與提供給市場高競爭力的通用無線芯片和無線MCU芯片和方案。巨微2014年7月成立于上海張江,公司辦公總部和研發(fā)中心位于張江云飛大廈(長三角國家技術創(chuàng)新中心張江創(chuàng)新綜合體)。巨微核心團隊具備19 年+芯片研發(fā)/市場營銷經(jīng)驗,擁有10億級以上出貨量的SOC/射頻/模擬芯片領域研發(fā)專家。公司具備完整自主演進的芯片系統(tǒng)架構和核心IP,技術能力覆蓋射頻、模擬、SOC和系統(tǒng)軟件的設計,公司創(chuàng)新的射頻“薪火”架構通過軟硬件協(xié)同計算,實現(xiàn)靈活而廣泛的應用適配,賦能碎片化物聯(lián)網(wǎng)應用。

關鍵詞:

最近更新

關于本站 管理團隊 版權申明 網(wǎng)站地圖 聯(lián)系合作 招聘信息

Copyright © 2005-2018 創(chuàng)投網(wǎng) - www.mallikadua.com All rights reserved
聯(lián)系我們:39 60 29 14 2@qq.com
皖ICP備2022009963號-3